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The elementary calculations performed using slide rules utilize the concept of the logarithm, invented in the
early 1600’s by John Napier of Scotland.1 Napier introduced the name logarithm as a combination of two
ancient Greek terms logos, meaning “divine reason”, and arithmos, meaning number. He was looking for a
relationship between an arithmetic and a geometric progression, so that tables could be generated that would
aid in performing multiplication calculations. At that time, calculations in astronomy and, perhaps most
importantly, in navigation required the multiplication of numbers of up to 6-7 digits each.

To illustrate the issue suppose we want to multiply the two numbers 4873 and 382. This can be performed on
paper in the following way:

2 2
6 5 2
1 1
4 8 7 3

× 3 8 2
1 2 2

9 7 4 6
3 8 9 8 4

1 4 6 1 9
1 8 6 1 4 8 6

Of course one needs to know the “times tables” very well. And after a few “carries” (indicated above in small
type, such as in “8 times 7 is 56, carry the 5”), keeping things lined up and keeping track of what is being
added requires discipline and concentration, especially for situations involving many more digits than the
above. And the repeated multiplication or division of several multi-digit numbers can become very tedious
very quickly. Napier’s concept was to find for each number a corresponding logarithm such that multiplying
two numbers was reduced to adding their logarithms. Adding two numbers, even if the numbers have many
digits, is a simpler task and much less error prone.

The concept that was studied and developed by Napier can be illustrated with the following table:

p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

The top row – the numbers designated “p” – run sequentially from 0 to 16. The bottom row – designated “x”
– starts with the number 1. Then, a base number is chosen. For our example we chose “2” as our base. Next,
each consecutive number in the x row is the previous result multiplied by the base number. The list created

1A nice discussion of Napier’s development of his early tables of logarithms can be found in Denis Roegel’s, Napier’s ideal
construction of the logarithms [Research Report], ffinria-00543934f (2010). See https://hal.inria.fr/inria-00543934/en .
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in the second row is called a geometric sequence. Now notice the following. If we take two numbers in the x
list and multiply them, the result falls under the sum of the corresponding values in the p list. For instance,
take 2 times 8; the result we know is 16. The corresponding values of p in the table for the numbers 2 and 8
are 1 and 3. We see that the sum of these p values is 1 + 3 = 4, and the number in the x row that falls
below this result is x = 16, the result of multiplying our original two numbers. The values of p are called
logarithms of the values of x.

Now suppose we wanted to quickly find 32 times 256. We could take out pencil and paper and write

1 1
1 1
2 5 6

× 3 2
1

5 1 2
7 6 8
8 1 9 2

or, from our table above, we could look up the logarithm of 32 which is 5, and the logarithm of 256 which
is 8. Adding the logarithms we find 5 + 8 = 13. We then look at the table to find which number x has a
logarithm of p = 13. The answer found from the table is x = 8192. Thus, 64 times 512 is equal to 8192.

In our simple example above, the value of x that can be used from the table is a rather sparse list. The goal
of Napier was to find a technique for computing logarithms of other integers in between in order to fill out a
complete table for any value of x. From the table it can be surmised, for example, that using 2 as our base,
the logarithm p for the number x = 7 is somewhere between 2 and 3. If we knew its logarithm more precisely,
we might be able to perform similar computations using the number 7.

Napier’s goal was to determine logarithms of the natural numbers for some suitable base number. Through
many years of effort he developed ratios of geometric sequences which allowed him to successfully compute
tables of numbers that could be added together in order to perform a multiplication or a division. In modern
mathematical terms, he was describing the addition and subtraction of exponents of a particular base number,
which in turn, is equivalent to multiplication and division. It is interesting to note that his development of
logarithms came at a time before the development of the concept of exponents and exponential notation (bx,
say). Nonetheless, by creating accurate tables of logarithms and producing scales that were proportional to
their values, the invention of the slide rule followed within a few short years. Its user was able to perform
quick multiplication and division calculations with sufficient accuracy for a wide variety of computational
applications.
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Exponents and Powers

Our present introduction to the logarithm continues with a review of the operation of raising a number to a
power. For example, let’s continue with the simple operation of multiplying the number 2 with itself some
p number of times. We call this “raising” 2 to the power of p, written “2p.” If p =2, then we say that the
square of 2 , or 2 to the power 2, is 22 = 2 × 2 = 4. For p = 3, the cube of 2, or 2 to the power 3, is 23 =
2 × 2 × 2 = 8. Clearly 2 to the first power (p = 1) is simply 21 = 2. For completeness we must also define the
operation of 2 to the power zero; if 22 is half of 23, and 21 is half of 22, then 20 is half of 21.; and half of
two is just one. Thus, for p = 0, two to the power zero is 20 = 1. (In fact, by the same argument, any real
number to the power of zero is equal to one.)

Let’s plot the results of taking 2p for the values of p = 0, 1, 2, 3, 4, 5:
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The next question is, what would be 2 raised to some power that is not an integer? That is, what about
20.5? 22.25? 23.659? What is the meaning of such an operation? Might the results of such operations
“line up” with the values plotted above?

To proceed, let’s look at a couple of properties of multiplying numbers an integer number of times. For
example, take two numbers which we write as powers of 2 – call them 2a and 2b. If we multiply these two
numbers together we arrive at 2a+b. For example,

22 × 23 = (2 × 2) × (2 × 2 × 2) = 2 × 2 × 2 × 2 × 2 = 25 = 22+3.

Additionally, if we take one of our numbers that is a power of 2 – say 2a – and raise that to another integer
power – say, a value of b – the result will be (2a)b = 2a×b; for example:

(22)3 = (2 × 2) × (2 × 2) × (2 × 2) = (2 × 2 × 2 × 2 × 2 × 2) = 26 = 22×3.
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In summary,

• ca × cb = ca+b, and
• (ca)b = ca×b.

If we accept these operations as general rules, then we can determine the values of our three operations that
we have asked about. First, our rules tell us that 20.5 × 20.5 = 21 = 2. Hence, 20.5 is the number that, when
multiplied by itself, yields 2. We call this the square root of two, and we know its value:

√
2 ≈ 1.414. Thus,

we can interpret 20.5 =
√

2 ≈ 1.414. Good approximations to the square roots of numbers can be found by
various iterative techniques, which are often taught in Middle School mathematics classes. And now that we
have a value for 20.5, we can see from our basic rules above that 21.5 = 2 × 20.5 and 22.5 = 22 × 20.5 and so
forth, and so it is easy to fill in more points on our graph (red squares):
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Next, what about 22.25? Again using our new rules above, we see that

22.25 = 22+0.25 = 22 × 20.25 = 22 × 2 1
4 .

We call 2 1
4 = 4

√
2 the “fourth root of 2” since, according to our rules,

2 1
4 × 2 1

4 × 2 1
4 × 2 1

4 = 2.

But through our rules of exponents we also see that 2 1
4 = (2 1

2 ) 1
2 =

√√
2 ≈

√
1.414 ≈ 1.189. Thus, finally,

22.25 will be 22 = 4 times this number, or 4.757. And, as before, knowing the value of 20.25, we can also easily
compute 21.25 = 2 × 20.25, 23.25 = 23 × 20.25 and so forth. In addition, 20.75 = 20.5 × 20.25 = 1.6818, and thus
21.75 = 2 × 20.75, 22.75 = 22 × 20.75, and so forth. Now, we can fill in our plot even further (blue squares):
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We see that the circles and the red and blue squares follow a general trend. So far we’ve been lucky to
use numbers and operations (square roots) that we know well and understand. Continuing in this way, we
can take further roots and powers and fill in the plot to whatever level necessary. So what about our third
example, 23.659? Looking at our graph above, if we follow the vertical line at p = 3.659 up to our group of
points, we might expect 23.659 to have a value of about 13 or so, as read off the left-hand scale.

Following our rules above, we can write 23.659 as 23 × 20.659 = 8 × 20.659. So one way (there are many) to
arrive at the answer is to re-write 23.659 as 23 × (21/1000)659. But 21/1000 = ((21/10)1/10)1/10, and 21/10 =
(21/5)1/2. Hence,

23.659 = 23 ×
[
(((((21/5)1/2)1/5)1/2)1/5)1/2

]659
= 23 ×

[√
(
√

(
√

21/5)1/5)1/5

]659

.

If we are able to find the fifth root of a number, as well as the square root of a number, then we can compute
23.659. That is, we can find the fifth root of 2 and take the square root of this result. Then take this answer
and repeat the process two more times. Finally, we take this result, multiply it with itself 658 times, and end
by multiplying by 8. This might take quite awhile by hand, but can be done easily on a modern personal
computer:

## [1] (2^3)*(sqrt(sqrt(sqrt(2^(1/5) )^(1/5) )^(1/5) )^659) = 12.6319021872098

The value of 23.659 =12.6319 is included on our plot above as a black diamond and, again, falls into the
pattern of our other computations. If we continue in this vein, in principle we could fill in an entire curve
and hence for any chosen value of p, integer or non-integer, we can compute a value for the operation 2p to
some desired accuracy.
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Empowered with this new information, problems now can be posed in reverse. We can imagine filling in our
graph until a continuous curve appears, and then take this curve and switch the axes as shown below. The
point of this switching of the axes is to emphasize that any number x can be represented by the number 2
raised to a particular power p:

0 1 2 3 4 5

0
10

20
30

40

2p

p

x 
=

 2
p

0 10 20 30 40

0
1

2
3

4
5

p, for which x =  2p

x

p 
=

 lo
ga

rt
hm

 o
f x

, f
or

 b
as

e 
=

 2

The concept of a logarithm is to chose a base (2, in our example here) and ask the question, “Given a general
number x, to what power must we raise the base in order to obtain this number?” The answer – the exponent
p – is called the logarithm of x for that particular base. Although we used 2 as our base number above, the
choice of “2” is arbitrary. The same procedures could be used for any base we choose such as 3 or 10, and
includes the use of non-integers or even irrational numbers such as π = 3.141592. . . The only caveats at
the moment are that the base number be greater than zero (zero raised to any power is zero; and negative
numbers complicate things) and it cannot be one. (One raised to any power is just one.)

So why go through all of the trouble of finding logarithms? Suppose one wanted to multiply two multi-digit
numbers, x and y. Multiplying two numbers such as x = 28718 and y = 81793 could take quite a while
and be prone to errors if not performed very carefully. With a table of values of logarithms for our chosen
base (here, base = 2), we can look up the values of the logarithms p and q for the numbers x and y that
satisfy x = 2p and y = 2q. Next, we reason that x × y = 2p+q. While multiplying the numbers x and y may
take take awhile by hand, the summation of p and q can be performed much more quickly and easily (and,
typically, with much less chance for error). We then look in our table for the number that has the total of
p + q as its logarithm, and this would be our final answer for x × y.

The realization that the multiplication of numbers can be equated to the addition of so-called logarithms was
Napier’s major achievement. If logarithms of real numbers could be tabulated to sufficient accuracy, then
complicated multiplication and division problems could be reduced to much simpler addition and subtraction
calculations. In Napier’s day, this was particularly important in navigation calculations performed at sea,
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for instance. Now, such calculations could be performed much more quickly and accurately. One didn’t
need to spend large amounts of time multiplying large numbers long-hand using pen and paper. Rather,
logarithms could be looked up in a book of numerical tables and added together to get a result. Napier and
his English colleague, Henry Briggs, produced detailed tables of common logarithms within just a few years of
their mathematical development. And the ability – even in the 1600’s – to compute the values of logarithms
of numbers to sufficient accuracy led almost immediately to the invention of the slide rule. A systematic
procedure for calculating the logarithm of an arbitrary number is left to the [next chapter][Computing
Logarithms]. Meanwhile, in the remaining sections of the present chapter, we will assume that values of
logarithms are available to us as we investigate their various properties and explore their use in performing
basic calculations.
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Logarithms and Log Scales

Consider an arbitrary positive real number x. As we just discussed, we can express x in terms of a base
number – say, b – raised to a power p:

x = bp.

In standard mathematical language we say that the logarithm of the number x is the exponent p:

logb x = p.

The above expression is read, “The log, base b, of x is equal to p.” This definition leads to the following
identity:

x = blogb x.

In mathematical terms we say that the function logb x is the inverse of the function bx – if we start with x
and find bx, and then take the logarithm using base b of the resulting number, we get x back again:

logb bx = x.

In our earlier example we used 2 as a base, but the most common base to use, which is what typical slide
rules have been based upon (no pun intended), is b = 10, or “Base 10”: x = 10p. The standard is simply to
define the logarithm – or, the common logarithm – as that using Base 10:

if x = 10p −→ log x ≡ log10 x = p.

In other words, ask, “To what power must you raise the number 10 in order to obtain the number x?” The
answer, p, is the logarithm of x (simply called “log of x”). The convention is to write “ log x” when the base
being used is 10. If it were another base, say 2, then the expression would be written log2 x.

We saw earlier that any number raised to the power of “zero” is by definition “one”. Hence, log 1 = 0. That
is, 1 = 100. The logarithm of a number greater than 1 will be a positive number. For example, 10 = 101 and
100 = 102, so log 10 = 1 and log 100 = 2. The logarithm of a number less than 1 will be negative: 0.1 = 10−1

and 0.01 = 10−2, hence log 0.1 = −1 and log 0.01 = −2. What about other, more general numbers? As
we did before for our “Base 2” example, we can take the square root of 10, which is 101/2 = 100.5 =

√
10

= 3.1623, and hence we can infer that log 3.1623 = 0.5. It can also be verified that 100.30103 yields 2.0000.
Thus, log 2 is approximately equal to 0.30103. Precise values of the common logarithms of numbers can
be calculated by using calculus, finite difference techniques, or other methods, and their values have been
computed and tabulated with various degrees of accuracy over the past centuries. One such method for
computing logarithms is presented in the [next chapter][Computing Logarithms]. Books containing tables of
values of logarithms were painstakingly produced and published for use in the types of calculations that will
be described below; these books are also collectible and can be found in many used book stores.
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A table of logarithms from the year 1781.2

|

2Tables de Logarithmes, Chez veuve DESAINTE, Libraire, rue du Foin, Paris, 1781.
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Modern electronic computer languages have built-in algorithms that can produce logarithms of numbers to
high accuracy. The following is a table of the Base 10 common logarithms of integer numbers between 1
and 100, similar to what can be found in a book of logarithms, but here generated by a modern personal
computer:

Table of Common Logarithms

x log x x log x x log x x log x
1 0.00000 26 1.41497 51 1.70757 76 1.88081
2 0.30103 27 1.43136 52 1.71600 77 1.88649
3 0.47712 28 1.44716 53 1.72428 78 1.89209
4 0.60206 29 1.46240 54 1.73239 79 1.89763
5 0.69897 30 1.47712 55 1.74036 80 1.90309
6 0.77815 31 1.49136 56 1.74819 81 1.90849
7 0.84510 32 1.50515 57 1.75587 82 1.91381
8 0.90309 33 1.51851 58 1.76343 83 1.91908
9 0.95424 34 1.53148 59 1.77085 84 1.92428
10 1.00000 35 1.54407 60 1.77815 85 1.92942
11 1.04139 36 1.55630 61 1.78533 86 1.93450
12 1.07918 37 1.56820 62 1.79239 87 1.93952
13 1.11394 38 1.57978 63 1.79934 88 1.94448
14 1.14613 39 1.59106 64 1.80618 89 1.94939
15 1.17609 40 1.60206 65 1.81291 90 1.95424
16 1.20412 41 1.61278 66 1.81954 91 1.95904
17 1.23045 42 1.62325 67 1.82607 92 1.96379
18 1.25527 43 1.63347 68 1.83251 93 1.96848
19 1.27875 44 1.64345 69 1.83885 94 1.97313
20 1.30103 45 1.65321 70 1.84510 95 1.97772
21 1.32222 46 1.66276 71 1.85126 96 1.98227
22 1.34242 47 1.67210 72 1.85733 97 1.98677
23 1.36173 48 1.68124 73 1.86332 98 1.99123
24 1.38021 49 1.69020 74 1.86923 99 1.99564
25 1.39794 50 1.69897 75 1.87506 100 2.00000

Taking a few examples, the values in the table tell us that the number 7 is equivalent to 100.8451, 12 =
101.07918, 63 = 101.79934, and 100 = 102. In the following curve the value x is read on the horizontal axis and
its logarithm is read on the vertical axis:
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The heavy vertical dashed lines in the plot above are at values of x = 100, 101, and 102, and we see that they
cross the blue curve at values of 0, 1, and 2 on the left-hand scale. Now suppose that we stretch the numerical
scaling of the horizontal axis to create a linear relationship to the values of logarithms along the vertical axis.
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The special scaling along the x axis shown in the final figure above is often referred to as a “log scale” and
this is what is found on the standard scales of a slide rule. The figure shows that with this particular scaling
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on the slide rule, the distance from the number 1 to the number x is directly proportional to the logarithm of
the number x. Notice that the distance from 1 to 10 along the horizontal axis is the same as the distance
from 10 to 100 (as would be the distance between 100 and 1000 or between 0.1 and 1, and so forth). Every
factor of 10 changes the logarithm by one unit. One can see also that the logarithm of 20 (distance from 1 to
20) is the same as the logarithm of 10 (distance from 1 to 10) plus the logarithm of 2 (distance from 1 to 2).
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Multiplication and Division

Suppose we have two numbers, x and y and we wish to multiply them together. If

x = 10p and y = 10q, then x × y = 10p × 10q = 10p+q.

Thus we see that the logarithm of x × y will be the sum of the exponents p and q, which are themselves the
logarithms of the original numbers. This gives the very important result:

log(x × y) = log x + log y.

Adding the logarithms of two numbers gives the logarithm of the product of the two numbers!

As for division, just remember that dividing by a number is equal to multiplying by that number’s reciprocal:

x ÷ y = x

y
= x × 1

y
= 10p × 1

10q
= 10p × 10−q = 10p−q.

So, subtracting the logarithms of two numbers gives the logarithm of their ratio:

log
(

x

y

)
= log x − log y.

The basic operations of the slide rule involve adding and subtracting distances along the rule which are
proportional to the logarithms of the numbers on the scales. Looking at our previous plot, we can see that
adding the logarithms of two numbers, let’s say 2.5 and 6, gives us the logarithm of their product – in this
case, 15:
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Keeping Track of Decimal Places

Consider the numbers 3.7, 37, and 370. Using our rules for logarithms, we see that each power of ten adds
“one” to the value of the logarithm:

log 3.7 = log(3.7 × 1) = log 3.7 + log 1 = log 3.7 + 0
log 37 = log(3.7 × 10) = log 3.7 + log 10 = log 3.7 + 1
log 370 = log(3.7 × 100) = log 3.7 + log 100 = log 3.7 + 2

We can see a similar pattern when looking back at our table of logarithms above. For example, notice that
log 6 = 0.7782, while log 60 = 1.7782. By keeping track of powers of 10, one only needs the values of the
logarithms for numbers between 1 and 10 to be able to determine the logarithm of any other number outside
that range.

As an illustration, recall the plot we made earlier using Base 2. The pattern between each integer value of p
repeats; the corresponding point in each repeat section is just “2” times larger than the point in the previous
section of the plot:
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Hence, if we want to know the value of 27.25, we only need to know the value of 20.25 and then multiply this
answer by 27 (= 128).

We can use any number as our base, and the same general rules will apply; for our Base 10 system of common
logarithms, multiplying by factors of 10 simply means adding zeroes or moving decimal points. Hence, by
keeping track of powers of ten, detailed tables of common logarithms of numbers between 1 and 10, which
themselves will have values between 0 and 1, are sufficient to perform a fairly accurate general multiplication
or division calculation, as we shall soon see.
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For example, the table below gives the 3-place logarithms for numbers between 1 and 10 in increments of 0.1.
For finer increments and for further accuracy of the logarithms, tables can take many pages of text. This led
to the publication of books of significant length that contained detailed tables of logarithms.

x log x x log x x log x x log x
1.0 0.000 3.3 0.519 5.6 0.748 7.9 0.898
1.1 0.041 3.4 0.531 5.7 0.756 8.0 0.903
1.2 0.079 3.5 0.544 5.8 0.763 8.1 0.908
1.3 0.114 3.6 0.556 5.9 0.771 8.2 0.914
1.4 0.146 3.7 0.568 6.0 0.778 8.3 0.919
1.5 0.176 3.8 0.580 6.1 0.785 8.4 0.924
1.6 0.204 3.9 0.591 6.2 0.792 8.5 0.929
1.7 0.230 4.0 0.602 6.3 0.799 8.6 0.934
1.8 0.255 4.1 0.613 6.4 0.806 8.7 0.940
1.9 0.279 4.2 0.623 6.5 0.813 8.8 0.944
2.0 0.301 4.3 0.633 6.6 0.820 8.9 0.949
2.1 0.322 4.4 0.643 6.7 0.826 9.0 0.954
2.2 0.342 4.5 0.653 6.8 0.833 9.1 0.959
2.3 0.362 4.6 0.663 6.9 0.839 9.2 0.964
2.4 0.380 4.7 0.672 7.0 0.845 9.3 0.968
2.5 0.398 4.8 0.681 7.1 0.851 9.4 0.973
2.6 0.415 4.9 0.690 7.2 0.857 9.5 0.978
2.7 0.431 5.0 0.699 7.3 0.863 9.6 0.982
2.8 0.447 5.1 0.708 7.4 0.869 9.7 0.987
2.9 0.462 5.2 0.716 7.5 0.875 9.8 0.991
3.0 0.477 5.3 0.724 7.6 0.881 9.9 0.996
3.1 0.491 5.4 0.732 7.7 0.886 10.0 1.000
3.2 0.505 5.5 0.740 7.8 0.892 NA NA

One can immediately see how logarithms can be used to multiply numbers. For example, notice from our
table that the logarithm of 1.5 is 0.176 and the logarithm of 3.6 is 0.556. The sum of the logarithms is 0.732,
which we can see from the table is the logarithm of 5.4 = 1.5× 3.6. Clearly many other examples can be
found just from this simple table. Now suppose we wanted to multiply 150× 3.6. We don’t need to have
the logarithm of 150 in our table – the logarithm of 150 will just be 2 + the logarithm of 1.5, or 2.176. The
result will just be 102 times the result for 1.5× 3.6, or 540. By keeping track of powers of ten, calculations
can be performed by just using logarithms of numbers between 1 and 10.
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Scientific Notation

Numbers encountered in many science and engineering problems can become quite large or quite small,
depending upon the units of measure being used. Writing numbers in what is called scientific notation
makes keeping track of decimal points and orders of magnitude (factors of ten) simpler, as well as making
computations using logarithms more straightforward. With a choice of 10 as our base, we can write any
positive number as a number between 1 and 10, times 10 raised to an integer power. A couple of examples
help:

5827 = 5.827 × 103; 0.0365 = 3.65 × 10−2

If we take the logarithm of our first number, as an example, and use our rules of multiplication, we see that

log 5827 = log(5.827 × 103) = log 5.827 + log 103 = log 5.827 + 3.

Likewise,
log 0.0365 = log 3.65 + log 10−2 = log 3.65 − 2.

Remember that 100 is just 1, and that the log of zero doesn’t exist – there is no finite power to which one can
raise the number 10 in order to produce zero exactly. Zero is just zero, and anything times zero is also zero.

As an easy example for illustration, consider the following multiplication : 1500 × 0.08. Using our prior table
of 3-place logarithms, we see that

r = 1500 × 0.08
= 1.5 × 103 × 8 × 10−2

−→ log r = log 1.5 + 3 + log 8.0 − 2
= log 1.5 + log 8.0 + (3 − 2)
= 0.176 + 0.903 + (3 − 2)
= 1.079 + 1
= 0.079 + 2
= log 1.2 + 2 (from the table)

∴ r = 120

Scientific notation became a popular way of expressing numbers being used in calculations, due to its emphasis
of the logarithmic approach. When it was necessary to multiply and divide a long string of numbers, it was
easier to write each number in scientific notation, add or subtract the relevant logarithms of each, and keep
track of the “factors of ten” to determine the final placement of the decimal point.
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Short Examples

To get a feel for using logarithms in calculations, let’s perform a few examples. We will suppose that we
have a table of logarithms already prepared, where the number x is tabulated for the range 1 ≤ x ≤ 10,
sub-divided into intervals such as 10-ths, or 100-ths, say, and the logarithms log x are entered into the table
with a certain accuracy, such as 5 decimal places, and are in the range log 1 ≤ log x ≤ log 10, or equivalently,
0 ≤ log x ≤ 1.

For example, suppose we want to compute 38900 × 0.792. We start by re-writing the problem as follows:

38900 × 0.792 = 3.89 × 104 × 7.92 × 10−1 = 3.89 × 7.92 × 103.

Then, taking the logarithm of this result,

log(3.89 × 7.92 × 103) = log 3.89 + log 7.92 + 3

Then, from a table of 5-place logarithms we find that

log(38900 × 0.792) = 0.58995 + 0.89873 + 3 = 1.48868 + 3 = 0.48868 + 4.

Next, we find the number between 1 and 10 that has the logarithm 0.48868. From our table of logarithms we
find that the number with logarithm 0.48868 is, to five significant figures: 3.0809. The FINAL result of our
multiplication is hence 3.0809 × 104 = 30809. Check (via computer):

## [1] 38900 * 0.792 = 30808.8

As we can see, the answer is correct, though its accuracy from the logarithmic approach will depend upon
the accuracy of the logarithm values used. Here, our answer with 5-place logarithms is good to 6 parts per
million. Such accuracy might be important in some applications, but might be overkill in others – do you
need to know the height of that tree in your backyard to within 50 microns?

As another example, let’s divide 245 by 5960. To start, write

245
5960 = 2.45 × 102

5.96 × 103 = 2.45
5.96 × 10−1.

Then, proceeding as before, we get

log(245/5960) = log 2.45 − log 5.96 − 1 = 0.38917 − 0.77525 − 1 = −0.38608 − 1

But our logarithm tables are for numbers that are greater than one. So, we add 1 and subtract 1 to the above
to get

log(245/5960) = −0.38608 − 1 = 1 − 0.38608 − 2 = 0.61392 − 2

which gives us a positive “remainder” (often called the mantissa) between 0 and 1, plus an integer (often
called the characteristic) which in this case happens to be negative.
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Then, from our logarithm table, we find that 0.61392 is the logarithm of 4.111. But the “-2” tells us to
move the decimal point two places to the left So, finally, we see that 245/5960 must be equal to 0.04111. By
computer we find that 245/5960 = 0.041107.

Taking two numbers that we used earlier, let x = 5827, and y = 0.0365. The product is x × y = 212.6855,
which can be verified by straightforward multiplication using pencil and paper, if you want to take the time.
But now let’s compute this product using logarithms. Here, we’ll use a computer to do the work,3 where the
function log10(a) below produces the Base 10 logarithm of the number a to a high degree of precision:
x = 5827
y = 0.0365
logx = log10(x)
logy = log10(y)

The output:

## [1] logx = 3.76544501809015 ; logy = -1.43770713554353 .

## [1] logx + logy = 2.32773788254662 .

## [1] 10^( 2.32773788254662 ) = 212.6855 .

The number with logarithm 2.32774 is 212.6855.

The computer example above illustrates well the usefulness of having values of logarithms accurate to many
decimal places. Of course, with a computer one doesn’t need to perform multiplications using logarithms.
But prior to computers, using tables of logarithms was a standard approach to perform multiplications and
divisions with high accuracy, and was taught in schools until the late 1970s.

Before electronic computing devices, one could have used a book of tables to look up the appropriate
logarithms and then add them together to perform a “multiplication”. Then, one would take that result and
find in the tables the number that had that value as its logarithm; this would be the final answer, with the
computer (the one doing the computing) having to keep track of the powers of ten. This would be repeated
as needed to multiply and/or divide a series of numbers.

The slide rule provides access to the values of logarithms (to a certain accuracy) and enables quick manipula-
tions of them for mathematical calculations without the need to write down each of the steps and without
looking up numbers in tables. The slide rule greatly sped up the process of performing long calculations,
when the final results were only required to be accurate to a few digits. We will come back to this procedure
when we get to [Slide Rule ABC’s and D’s].

3Throughout this text we are using the R programming language. See [@R-base].
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Raising Numbers to Powers

Starting with our first equation in this chapter, we had x = bp and we said that the logarithm of x is
logb x = p. Now suppose we take x and raise it to the power of r,

xr = (bp)r = bp×r,

and then take the logarithm:
logb xr = p × r.

Since p = logb x, we have the general result:

logb xr = r × logb x.

To raise a number x to some arbitrary power r, one would take the logarithm of x, find the product of that
number times r, and then find the number whose logarithm is equal to that product.

Suppose we wish to compute y = 72/5. Finding the logarithm of each side, we get

log y = log 72/5 = 2/5 × log 7 = 0.4 × 0.84510 = 0.33804

The number whose log is 0.33804 is then looked up in a table, say, and found to be y = 2.1779.

As a check, we can compute y5/2 = (√y)5 on a computer, which should give us “7” to good accuracy:

## [1] sqrt(2.1779)*sqrt(2.1779)*sqrt(2.1779)*sqrt(2.1779)*sqrt(2.1779) = 7.0000

For the case where the exponent is a negative number, the above relationship shows that division is implied,
as the resulting logarithm will be subtracted in any ongoing calculation:

log 1
xr

= log x−r = −r × log x.

This also emphasizes that a number less than one will have a negative logarithm. For instance, suppose
the number u = xr, where x and r are each greater than one. Then u > 1. Now the number v = 1/u < 1
and its logarithm will be log v = log x−r = −r · log x < 0. Consider, for example, log 1

100 = log 0.01 =
log 10−2 = −2 log 10 = −2.
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Another Example

Let’s compute the volume of a sphere of radius 4.58 inches. This time, we will use 3-place logarithms (i.e.,
logarithms to three decimal places).

The formula for the volume of a sphere is

V = 4
3πr3.

So, using the rules we have just learned,

log V = log 4 − log 3 + log π + log 4.583

= log 4 − log 3 + log π + 3 × log 4.58
= 0.602 − 0.477 + 0.497 + 3 × (0.661)
= 2.605 = 0.605 + 2

The number with logarithm 0.605 is 4.027. The “2” tells us to multiply by 100. So, this gives the final value
of the volume, V = 402.7 cubic inches. (Again, check with computer: 402.4250839 cubic inches. We have
about a 0.07% error in our answer, using 3-place logarithms.) Of course, if our knowledge of the radius is
only to three digits as given above, then no more than the first three digits in the answer should be of any
significance. In real life, of course, one must always perform an appropriate error analysis of a result, but
that is beyond the scope of our present tutorial.

The above example is a very common operation in science, engineering, and many industrial settings – the
sequential multiplication and division of a series of numbers. Having a device, like the slide rule, that has
logarithmic scales built in can allow the user to very quickly perform such operations without having to resort
to books of tables of logarithms and writing down intermediate results.
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Change of Base

If one has knowledge of the logarithm of a number for a particular base, say b, then the logarithm of the
same number relative to a different base, say a, can be found via the following argument. If

x = ap

then taking the logarithm using base b on both sides,

logb x = logb ap = p × logb a

using the rule we discussed earlier. But note that p is the logarithm of x using base a, and so

logb x = loga x × logb a.

Thus, a switch from base b to base a is performed by

loga x = logb x/ logb a.

More than just an interesting tidbit, this is actually an important result. It tells us that we do not need
hundreds of tables of logarithm values for the vast number of different bases that might be of interest in
different situations. We actually only need one table of values. If we have the logarithms tabulated for one
base, we can easily compute values for any other base, as needed. From our historical path, and through a
bit of evolution, we have become a “Base 10” civilization, and so logarithms using that base are chosen as the
common logartihms. The development of the calculus and of functional analysis in mathematics shows that
using the constant e = 2.718. . . is a natural choice for describing exponential growth and decay; logarithms
with e as their base are called natural logarithms. (See [The Natural Logarithm].) In mathematical parlance,
the common logarithm of x is denoted by log x while the natural logarithm is denoted by ln x. If yet a
different base b is used, it is denoted by logb x as used earlier.

As an illustration of exchanging bases, again look at y = 23.659. Taking the logarithm using Base 2,

log2 y = 3.659

and since log2 y = log y/ log 2, then

log y = log2 y × log 2 = 3.659 × log 2 = 3.659 × 0.30103 = 1.10147 = 0.10147 + 1.

The number with common logarithm 0.10147 is 1.2632, and so it must be that y = 12.632 as we found
previously. (See Exponents and Powers.)

As another example, suppose we also needed the natural logarithm of our result y = 12.632. We can do so by
noting that

ln y = log y/ log e.

For reference, the common logarithm of e is log e = 0.43429, and, when needed, the natural logarithm of 10
is ln 10 = 2.30259. Hence,

ln y = 1.10147/0.434 = 2.536

and, correspondingly, y = e2.536 = 12.632.
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Summary Thus Far

The basic rules of logarithms, true for any base b, can be summarized as follows:

• logb 1 = 0

• logb b = 1

• logb(x × y) = logb x + logb y

Additionally, from these rules we found that:

• logb xr = r × logb x

• logb x = loga x/ loga b

• logb(1/x) = logb x−1 = − logb x

• logb(x/y) = logb x − logb y

And, by standard convention:

• Notation when using Base 10: log x ≡ log10 x

• Notation when using Base e: ln x ≡ loge x

So far we have discussed the nature of logarithms and their use in performing several types of calculations,
assuming that the values of the necessary logarithms have been tabulated. However, though we have talked
about a few specific examples, we have not addressed how the value of a logarithm for any arbitrary number
can be obtained numerically. The history of calculating logarithms goes back over 400 years to the late-1500s,
and the techniques of that day are long and laborious. During the following century, after the development of
the calculus by Isaac Newton of England and Gottfried Wilhelm Leibniz of Germany, new approaches to such
problems made the computation of a logarithm much more tractable. A calculus-based approach is presented
in the following chapter from which formulas for directly computing logarithms will be presented.

22


	Exponents and Powers
	Logarithms and Log Scales
	Multiplication and Division
	Keeping Track of Decimal Places
	Scientific Notation
	Short Examples
	Raising Numbers to Powers
	Another Example
	Change of Base
	Summary Thus Far

